پیش بینی قیمت نفت با دو روش arima و شبکه های عصبی مصنوعی

Authors
abstract

توانایی کم­نظیر شبکه­های عصبی مصنوعی به عنوان ابزاری قدرتمند برای تحلیل و برآورد در حوزه علوم تجربی و مهندسی موجب شد تا مورد توجه اقتصاددانان قرار گیرد. در این پژوهش، پس از مرور پژوهش­های انجام­شده در مورد توانایی پیش­بینی مدل­های خود توضیح جمعی میانگین متحرک (arima)[1]و شبکه­های عصبی مصنوعی(ann)[2] به مقایسه این دو روش برای پیش­بینی قیمت روزانه نفت در دوره آوریل 1983 تا ژوئن 2005 پرداخته­ایم. افزون بر این، در این پژوهش پس از مدلسازی به وسیله شبکه­های عصبی مصنوعی، به منظور تشخیص سهم مشارکت هر پارامتر ورودی در این مدل از تجزیه و تحلیل حساسیت استفاده کرده­ایم. با توجه به حجم وسیع به کارگیری اطلاعات روزانه قیمت جهانی نفت (بیش از 5500 روز اطلاعات) نتایج به دست آمده نشان­دهنده برتری غیرقابل مقایسه مدل شبکه­های عصبی مصنوعی نسبت به مدل arima در پیش­بینی قیمت روزانه نفت است. 1.autoregressive integrated moving average [2].artifical neural networks

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

پیش‌بینی قیمت نفت با دو روش ARIMA و شبکه‌های عصبی مصنوعی

توانایی کم­نظیر شبکه­های عصبی مصنوعی به عنوان ابزاری قدرتمند برای تحلیل و برآورد در حوزه علوم تجربی و مهندسی موجب شد تا مورد توجه اقتصاددانان قرار گیرد. در این پژوهش، پس از مرور پژوهش­های انجام­شده در مورد توانایی پیش­بینی مدل­های خود توضیح جمعی میانگین متحرک (ARIMA)[1]و شبکه­های عصبی مصنوعی(ANN)[2] به مقایسه این دو روش برای پیش­بینی قیمت روزانه نفت در دوره آوریل 1983 تا ژوئن 2005 پرداخته­ایم. ...

full text

پیش بینی تولید آبزیان دریایی در ایران با استفاده از روش ARIMA و شبکه عصبی مصنوعی

پیش­بینی پدیده­های اقتصادی ساختاری فراهم می­کند تا مدیران و مسؤلان اقتصادی را در گرفتن تصمیم‌های درست یاری ­دهد. هدف اصلی این مطالعه پیش­بینی مقدار تولید آبزیان دریایی در ایران است. برای این منظور از روش­های سری زمانی خود توضیح جمعی میانگین متحرک (ARIMA)[1] و شبکه عصبی مصنوعی[2] استفاده می­شود. در این مطالعه سه ساختار گوناگون شبکه عصبی شامل شبکه عصبی پیشرو[3]، تابع پایه شعاعی[4] و المن[5] بکار ...

full text

مقایسه قدرت پیش بینی روش شبکه عصبی مصنوعی با سایر روش های پیش‏بینی: مورد قیمت چغندرقند

این مطالعه با هدف پیش­بینی قیمت اسمی و واقعی چغندرقند و مقایسه روش شبکه عصبی مصنوعی با سایر روش­ها صورت گرفت. پس از بررسی ایستایی سری­ها، تصادفی بودن متغیرها با استفاده از دو آزمون ناپارامتریک والد- ولفویتز و پارامتریک دوربین- واتسون بررسی شد. براساس نتایج این آزمون­ها سری قیمت اسمی چغندرقند به‏عنوان سری غیرتصادفی و قابل پیش­بینی و سری قیمت واقعی به‏عنوان سری تصادفی ارزیابی شد. دوره مطالعه نیز ...

full text

مدلسازی و پیش بینی صادرات آبزیان دریایی در ایران با استفاده از روش ARIMA و شبکه های عصبی مصنوعی

هدف اصلی این مقاله، مدلسازی و پیش بینی میزان صادرات آبزیان دریایی در ایران است. برای این منظور، از روش های سری زمانی خود توضیح جمعی میانگین متحرک(ARIMA) و شبکه عصبی مصنوعی استفاده می شود. به منظور انجام بررسی، از داده های ماهانه دوره 1374:03 تا 1387:12 برای برآورد و آموزش مدل و از داده های دوره از 1388:01 تا 1390:12 به منظور بررسی قدرت پیش بینی مدل های مختلف استفاده می شود. در این مطالعه، معیار...

full text

مطالعه تطبیقی روش های ARIMA و شبکه های عصبی مصنوعی در پیش بینی نیاز داخلی برق کشور

  آگاهی از میزان تقاضای انرژی برق در هر دوره، به منظور برنامه ریزی دقیق، برای اعمال سیاست گذاری های لازم، امری ضروری است. از این رو پیش بینی تقاضای آن برای بخش های مختلف اقتصادی حائز اهمیت است. امروزه از بین روش های پیش بینی، شبکه های عصبی مصنوعی، در زمینه تجزیه و تحلیل و مدل سازی روابط غیرخطی یکی از ابزار قدرتمند به حساب می آید که استفاده از آن در سال های اخیر در اقتصاد کلان گسترش یافته است...

full text

پیش بینی منابع مالی بانک با استفاده از مدل خطی( ARIMA) و غیرخطی شبکه های عصبی مصنوعی فازی

یکی از مهم‌ترین موارد مورد علاقه مدیران بانکی به عنوان متغیری تأثیرگذار بر صنعت بانکداری، اطلاع از وضعیت سپرده‌های بانکی است که فعالیت بانک تا حد زیادی بستگی به آن دارد. ازاین‌رو مدیران بانک‌ها علاقه‌مند هستند بدانند که میزان کل سپرده‌های بانک در زمان معینی در آینده چقدر خواهد بود. پیش‌بینی میزان سپرده‌ها، تغییر و نوسان این سپرده­ها می‌تواند در امر برنامه­ریزی و تصمیم­گیری به بانک‌ها کمک نماید....

full text

My Resources

Save resource for easier access later


Journal title:
پژوهش های اقتصادی ایران

جلد ۹، شماره ۳۲، صفحات ۱۶۱-۱۸۳

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023